INTRODUCTION:
Reverence for the beauty and usefulness of the naturally occurring materials around us has been felt and expressed ever since man learned to use them for improving the quality of life and standard of living. Various stages, in the growth of our civilization are therefore aptly named after stone, iron and bronze. It is customary to refer to the current millennium as the age of materials. This is no less a measure due to the rapid strides that the field of materials science and technology has made over the last fifty years or so. In our persistent attempts to improve the performance and versatility of a given material or combination of materials as in composites, we have learnt to observe and analyse the way nature has so successfully developed materials in living organisms and systems. Nature is yielding some of its long held secrets only now because of the increased sophistication and capabilities of the instruments of investigation that are at our disposal. The term “biomimetics” originates from the Greek words “bios” (life) and “mimesis” (to imitate), yet its definition is not as simple as just those two words. More specifically, biomimetics is a creative form of technology that uses or imitates nature to improve human lives.
Humans have heavily impacted nature with industrialization and resource extraction; however, biomimetics can help to avoid this pattern. Biomimetics goes beyond simply using natural properties as the basis for innovation of new products. Such products can be designed to play a part in general industry as well as to provide human convenience in the fields of chemistry, biology, architecture, engineering, medicine, and biomedical engineering.
The basic research method for biomimetics has six steps, which can be used to apply biomimetics to design, product, service, and agriculture like the sticky substance found in geckos’ feet, the functional possibilities of biologically inspired design should be researched rather than just applying the design as it is used by the organism. Although the discovery or fusion of innovative technology is crucial for increased profits, a simple creative design idea can provide greater convenience for human life.
The function of the organism, the principles under which that function is achieved, and the relationship between these two must be established. Knowledge and application of various materials need to be accumulated through research and database compilation. The relationship between structure and function usually comes from the surface structure, which can be observed by a scanning electron microscopy technique. These fine structures play an important role in the organism and are said to be the first step for biomimetics.
Examples of biomimetics in industry
Aircraft:
The emergence of airplanes realized the age-long dream of mankind to fly, but it was also a groundbreaking form of transportation. The basic structure of the wings of airplanes consists of a differing sized curved surface on the upper and lower part of the wing that creates hydrodynamic forces explained by the Bernoulli effect. Through this hydrodynamic structure, the velocity of the airstream is faster on the upper part of the wings and slower on the bottom part of the wings. The higher pressure from the bottom of the wings and the speed of the plane enables the 100 ton airplane to fly. This was the principle that led the Wright brothers to succeed in their first flight, but it was also the result of numerous years of biomimetic research on the structure and design of birds’ wings and their feathers.
Architecture:
Biomimicry has the longest history of application in architecture. Previous biomimetic technologies are being used to this day and will be developed further. The most notable example of biomimetic architecture is the 6 m-tall termite’s nest in the African grasslands. These nests are built from soil, tree bark, sand, and termite saliva, yet they are firmer than concrete.
Biomimetics in biomedical engineering
With designs originating from organisms, biomimetics has facilitated and improved human life through many convenient products. In the future, biomimetics will have a greater impact through the combination of medicine, science, and biomedical engineering to treat diseases, physical disabilities, and wounds. Regenerative medicine and tissue engineering are particularly promising fields. Principles and functions of biomimetics that can be applied in biomedical engineering are derived from many sources, including how a lizard regenerates its tail and a buckhorn regenerates its horns every year, the adhesive, plegmatical, and regenerative properties of a spider web, an leukocyte adhesion/migration in inflammation. An example would be a biocompatible medical bandage that can be made compatible with human tissue and integrated with a ubiquitous health care (U-health) system to get real time reports on the granular status of recovery or disease.
A biocompatible, short-lived medical bandage or tape can be used to detect signals, allowing us to monitor heart attacks or myocardial infarction that cannot be monitored or detected using current medical devices. Such a bandage would also be compatible with our skin and result in fewer side effects and less irritation despite better attachment.
Conclusion
Biomimetics or biomimicry have been used and advanced even without formal research in many areas. Accumulating creative ideas as a foundation, mankind has accelerated the speed of development and evolution of civilization. However, such rapid industrialization has resulted in environmental pollution and a shortage of natural resources that is threatening the survival and future of humanity. As a result, it has become critical and urgent to find alternative methods to engineer materials, products, and services.
Biomimetics is potentially the best method to help us cope with future development of civilization, environmental pollution, and resource shortage threats.
INTRODUCTION:
Reverence for the beauty and usefulness of the naturally occurring materials around us has been felt and expressed ever since man learned to use them for improving the quality of life and standard of living. Various stages, in the growth of our civilization are therefore aptly named after stone, iron and bronze. It is customary to refer to the current millennium as the age of materials. This is no less a measure due to the rapid strides that the field of materials science and technology has made over the last fifty years or so. In our persistent attempts to improve the performance and versatility of a given material or combination of materials as in composites, we have learnt to observe and analyse the way nature has so successfully developed materials in living organisms and systems. Nature is yielding some of its long held secrets only now because of the increased sophistication and capabilities of the instruments of investigation that are at our disposal. The term “biomimetics” originates from the Greek words “bios” (life) and “mimesis” (to imitate), yet its definition is not as simple as just those two words. More specifically, biomimetics is a creative form of technology that uses or imitates nature to improve human lives.
Humans have heavily impacted nature with industrialization and resource extraction; however, biomimetics can help to avoid this pattern. Biomimetics goes beyond simply using natural properties as the basis for innovation of new products. Such products can be designed to play a part in general industry as well as to provide human convenience in the fields of chemistry, biology, architecture, engineering, medicine, and biomedical engineering.
The basic research method for biomimetics has six steps, which can be used to apply biomimetics to design, product, service, and agriculture like the sticky substance found in geckos’ feet, the functional possibilities of biologically inspired design should be researched rather than just applying the design as it is used by the organism. Although the discovery or fusion of innovative technology is crucial for increased profits, a simple creative design idea can provide greater convenience for human life.
The function of the organism, the principles under which that function is achieved, and the relationship between these two must be established. Knowledge and application of various materials need to be accumulated through research and database compilation. The relationship between structure and function usually comes from the surface structure, which can be observed by a scanning electron microscopy technique. These fine structures play an important role in the organism and are said to be the first step for biomimetics.
Examples of biomimetics in industry
Aircraft:
The emergence of airplanes realized the age-long dream of mankind to fly, but it was also a groundbreaking form of transportation. The basic structure of the wings of airplanes consists of a differing sized curved surface on the upper and lower part of the wing that creates hydrodynamic forces explained by the Bernoulli effect. Through this hydrodynamic structure, the velocity of the airstream is faster on the upper part of the wings and slower on the bottom part of the wings. The higher pressure from the bottom of the wings and the speed of the plane enables the 100 ton airplane to fly. This was the principle that led the Wright brothers to succeed in their first flight, but it was also the result of numerous years of biomimetic research on the structure and design of birds’ wings and their feathers.
Architecture:
Biomimicry has the longest history of application in architecture. Previous biomimetic technologies are being used to this day and will be developed further. The most notable example of biomimetic architecture is the 6 m-tall termite’s nest in the African grasslands. These nests are built from soil, tree bark, sand, and termite saliva, yet they are firmer than concrete.
Biomimetics in biomedical engineering
With designs originating from organisms, biomimetics has facilitated and improved human life through many convenient products. In the future, biomimetics will have a greater impact through the combination of medicine, science, and biomedical engineering to treat diseases, physical disabilities, and wounds. Regenerative medicine and tissue engineering are particularly promising fields. Principles and functions of biomimetics that can be applied in biomedical engineering are derived from many sources, including how a lizard regenerates its tail and a buckhorn regenerates its horns every year, the adhesive, plegmatical, and regenerative properties of a spider web, an leukocyte adhesion/migration in inflammation. An example would be a biocompatible medical bandage that can be made compatible with human tissue and integrated with a ubiquitous health care (U-health) system to get real time reports on the granular status of recovery or disease.
A biocompatible, short-lived medical bandage or tape can be used to detect signals, allowing us to monitor heart attacks or myocardial infarction that cannot be monitored or detected using current medical devices. Such a bandage would also be compatible with our skin and result in fewer side effects and less irritation despite better attachment.
Conclusion
Biomimetics or biomimicry have been used and advanced even without formal research in many areas. Accumulating creative ideas as a foundation, mankind has accelerated the speed of development and evolution of civilization. However, such rapid industrialization has resulted in environmental pollution and a shortage of natural resources that is threatening the survival and future of humanity. As a result, it has become critical and urgent to find alternative methods to engineer materials, products, and services.
Biomimetics is potentially the best method to help us cope with future development of civilization, environmental pollution, and resource shortage threats.